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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

TECHNICAL NOTE D-400 

ANALYSIS O F  FRAME-REINFORCED CYLINDRICAL SHELLS 

PART I - BASIC THEORY 

By Richard H.  MacNeal and John A. Bailie 

SUMMARY 

The state of s t r e s s  in and near a reinforced frame subjected to concentrated loads 
and moments and supported in a circular cylindrical shell  is investigated and shown to 
be mainly dependent upon a single parameter. The theoretical approach is new and 
enables tables of coefficients for the calculation of loads per inch in the shell a s  well 
as loads and deflections in the frame to be  evaluated using a digital computer. The 
tables a r e  presented in Pa r t  I11 of this report. 

A comparison of this work and two existing theories is made to  show relationships 
between parameters developed in the three methods of analysis. The usefulness of 
these two theories is thereby extended. Although mainly applicable to airplane fuse- 
lages, the results can be applied to problems involving cylindrical shells whose 
thicknesses a re ' sma l l  compared to their diameters, such as ballistic missile bodies. 

INTRODUCTION 

The analysis of stress distribution in  a flexible-frame-supported cylindrical shell, 
when the shell 's frame is subjected to concentrated loads, is a problem of considerable 
complexity. There a r e  two approaches for the solution: One is to  take advantage of 
the advances in high speed computers to make a complete redundant analysis; the other 
is to develop a method which is simple and quick to apply, and which promotes deeper 
understanding of the problem. This latter approach, although lacking precision due to 
the simplified assumptions involved, is the one adopted in this report. 

Wignot, Combs, and Ensrud (ref. 1) developed the f i rs t  theoretical solution to 
the problem. Their model of the shell assumes that there a r e  no frames,  except the 
loaded frame,  that the longerons a r e  infinitely rigid for  axial loads and infinitely flexible 
for  bending loads and the shear  panels have uniform shear  stiffness. In this solution, the 
perturbations from the Engineers Bending Theory are assumed to die out within a "length to 
the undistorted section" L, which i s  chosen empirically. Many curves,  giving the loads and 
deflections in the loaded frame a s  a function of one parameter,  are included. 
af ter  this work (ref. l), Hoff presented an analysis (ref. 2) based on the assumption 

Shortly 

'Originally prepared as LMSD 49732, Lockheed Missiles and Space Division, 
Sunnyvale, California, and reproduced in original form by NASA, by agreement with 
'ackheed Aircraft Corporation, to increase availability. 
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that all  the unknown quantities are harmonic in the polar angle of the shell  and the 
unknown coefficients a r e  evaluated by a strain energy technique. 
model of the shell in references 2,  3, and 4 allows for axial and bending stresses in 
the shell ,  and considers the shell frames to be equally spaced and to  have moments 
of inertia equal to that of the loaded frame. The ideas presented by Hoff 
enabled Duberg and Kempner, by the use of recurrence formulas (ref. 3), to present 
curves giving the loads in the shell a s  a function of two parameters (ref. 4 ) .  

The structural  

The model adopted in the present report (the first of three reports on shell analysis) 
is s imilar  to that of references 2,  3, and 4,  with the exception that the frames which 
a r e  not loaded externally a r e  assumed to  be "smeared out" in the axial direction, 
producing a shell with a circumferential bending stiffness per unit length. It is fully 
realized that practical structures often bear little similarity to the model suggested. 
Methods a r e  presented in the appendixes which account for some of the differences 
between the model and practical shells and results a r e  compared with those of refer- 
ences 1 and 4. 
the axial direct ioqis  solved in reference 6. Reference 7 provides a large number of 
tables from which the loads and deflections can be computed. It also contains suggestions 
for  handling shells which differ from the model in  a number of respects. 

The problem of discontinuities of circumferential bending stiffness in 

GLOSSARY OF SYMBOLS 

A 2.  25/y4 parameter of references 3 and 4 

An 
arbi t rary constants of equation (39) 

a n 
2 2 B 

C ,etc.  

y /(Lr/Lc) -parameter of references 3 and 4 

coefficients de cribing loads in shell and loads and displacements in the 
loaded frame !see equations (88) to  (95)) 

elements of the matrix defined in equations (A. 10) and (A. 11) 

qP 

D.. 
1J 

d parameter of reference 1 

E Young's modulus, lbs/in 

E ,etc. arbi t rary constants in equation (B-1) 

e 

F axial force in loaded frame (lbs) 

f 

2 

Pn 
base of natural (Naperian) logarithims 

transverse load per inch in shell (Ibs/in. ) 

. 

. 

c 

" 



3 

G 

Gin, etc. 

g 

I 

I, 

IO 

I 

Lr 

j0 

M 

MO 

m 

N 

n 
C 

P 

P1, etc. 

4 

r 

S 

2 shear  modulus (lbs/in ) 

arbitrary constants in equations (34) and (35) 

eccentricity between shell and loaded frame's neutral axis (ins. ) 
4 

moment of inertia of a typical unloaded frame (in ) 

4 moment ofJinertia of frame at x = 1 (in ) 

4 
moment of inertia of the loaded frame (in ) 

3 I /.io (in ) 

distance from loaded frame to undistorted shell section 

characteristic length (see Glossary) = r [ t '  r2/i 1 q/& (in. ) 

characteristic length (see Glossary) = r 

frame spacing (in.) 

(in. ) 
1 

Et ' /Gt/2 (in. ) 

bending moment in the loaded frame 

externally applied concentrated moment (in.-lbs) 

bending moment per inch in the shell (in. -lbs/in. ) 

constant defined in equation (38) 

index of harmonic dependance in the $I direction 

externally applied concentrated radial load (lbs) 

axial load per inch in shell (lbs/in. ) 

roots of the characteristic equation (equations 23 to 26) 

shear flow in skin (lbs/in.) 

shear  flow applied to the frame (lbs/in.) 

radius of the skin line 

transverse shear  in the loaded frame (Ibs) 

(in.-lbs) 

(in.)  

C 
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S transverse shear per inch in shell (lbs/in. ) 

externally applied concentrated tangential load (lbs) *o  

t skin panel thickness (in. ) 

tl effective skin panel thickness for axial loads (in. ) 

u axial displacement of shell (in. ) 

V tangential displacement (in. ) 

V tangential displacement at shell neutral axis,  when eccentricity between 
shell and frame neutral axis is considered (in. ) N. A. 

W radial displacement (in. ) 

X axial co-ordinate of shell (in.) 

Z..  matrix elements giving the stress-displacement relations at  
free end of a semi-infinite shell 

real  part of the complex roots of the characteristic equation 

imaginary part of the complex roots of the characteristic equation 

real roots of the characteristic equation 

"beef-up" parameter = I /2i  Lc 

11 

CY n 

Pn 

(Y In, ff 2n, 

Y 0 

e 
e Ei(n3 - n)2 /Gtr4 

n2(n3 - n)' i / t '  r 

rotational displacement of the loaded frame 

6 A 

4 polar co-ordinate of frames and shell 

7 g/r - eccentricity parameter 

- denotes symmetric harmonic coefficient 

- - denotes antisymmetric harmonic coefficient 

. 

When an expression holds for both cases,  the symmetric .case is derived. 
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GLOSSARY OF TERMINOLOGY 

The terms "Input Impedance" and "Characteristic Length" a r e  frequently used 
in this report. They are defined a s  follows : 

Input Impedance is the relationship between the tangential displacement and 
shear  flow harmonic coefficients of the shell a t  the section of the loaded frame. 

Characteristic Length. In this report there a r e  two characterist ic lengths 
defined a s  follows : (1) Lc is the distance required for the exponential envelope 
of the lowest-order, self-equilibrating s t ress  system to decay to  I/e of its value 
a t  x = 0, provided that the skin panels a r e  rigid in shear .  (2) L is the distance 
required for the envelope of the lowest-order, self-equilibrating sfress system to 
decay to l / e  of its value at  x = 0,  provided that the frames a r e  rigid in bending. 

A REINFORCED LOADED FRAME IN A N  INFINITE, UNIFORM SHELL 

Plan of the Report 

In this part of the report, analytical solutions a r e  obtained describing the state of 
s t r e s s  in and near a reinforced frame subjected to concentrated loads and situated in 
an infinite, uniform, circularly-cylindrical shell. 
ical analysis leading to  them,form a basis for developments in the r e s t  of the report 
and in references 6 and 7. 

These solutions,and the mathemat- 

Many reinforced shells contain longitudinal members,  called longerons, carrying 
most of the direct s t r e s s .  
longerons is divided by the circumference, an effective skin thickness resisting direct 
s t resses  is derived. 
tive thickness is described a s  "smearing out" the longerons. 

If the total direct-stress-carrying a rea  of both skin and 

The process of finding the contribution of the longerons to the effec- 

In these analyses, the longerons are assumed t o  be "smeared out", producing a 
uniform shell with thickness, t , for  shear loads and thickness, t '  , for axial loads. 
In addition, the frames that are not externally loaded are "smeared out" in the axial 
direction to produce a circumferential bending stiffness, Ei , per unit length. 
bending stiffness of the externally-loaded frame is not "smeared out". 
claimed for this approach a r e  : 

The 
The advantages 

(1) A simplification of the mathematical process involved in getting a solution. 
Previous solutions were only partly analytic in that certain coefficients could 
be obtained only in numerical form. 
motes c learer  insight into the processes involved. 
extension to  more difficult problems. 

The simplification of the results pro- 
It also permits easier 
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(2) Elimination of one parameter in plotting solutions. 
two parameters were required in order to  describe the properties of a uniform 
shell. In the present analysis, two parameters a r e  required to describe the 
properties of a shell in which the loaded frame may be reinforced. Fo r  shells 
typified by conventional transport airplane construction and ballistic missile 
bodies, only one of these parameters is important. 

In references 3 and 4,  

In "smearing out" the shell f rames,  but not the loaded frame,  the effect of finite 
f rame spacing on the solutions is eliminated. This effect is treated in Appendix A, 
where it is shown that a simple approximate correction gives good results for most 
practical cases.  

The loads and deflections in the shell and loaded frame a r e  shown in figures 1 and 2. 

Assumptions 

(1) The loaded frame has in-plane bending flexibility. 
warp out of its plane and to twist. It has no extensional o r  shearing 
flexibilities . 

(2) The effect of the eccentricity of the skin attachment with respect to the frame 
neutral axis is ignored. 

The shell consists of skin, longerons, and frames similar to  the loaded 
frame (but possibly with different moments of inertia). 
have no bending stiffness. 

The longerons a r e  "smeared outT' over the circumference giving an equivalent 
thickness, 

(5) The shell  frames a r e  "smeared out" in the axial direction, giving an equivalent 
moment of inertia per inch, 

It is perfectly free to 

(3) 
The skin and longerons 

(4) 
t' , (including effective skin) for axial loads. 

i , for circumferential bending loads. 

Method of Solution 

An exploded view of the shell is shown in figure 3. 

(I) Partial differential equations a r e  written describing relationships between 
internal forces and displacements in the shell. 

(2) Dependence of all unknown quantities on the polar angle 4 (see fig. 1) is 
assumed to be harmonic. For  example 

m 

q = 2 C n s i n n 4  -2 K c o s n 4  
n= 1 n=o 



1 .  

This step reduces the partial differential equations of step (1) to ordinary 
differential equations in x (with n as a parameter) which a r e  combined and 
solved. 

(3) Since the shell is symmetrical with respect to the plane x = 0,  the axial dis- 
placement, u , is planar for x = 0.  This boundary condition permits a 
definite expression to be written between the shear  flow harmonic coefficients, 

and the tangential displacement harmonic coefficients, T at  x = 0 .  qn' n '  

(4) Another relationship involving qn, V , and the applied concentrated loads 
is obtained for the loaded frame, anayzed as a free r ing.  

(5) Combination of the expressions obtained in steps (3) and (4) results in the 
determination of an and all  other harmonic coefficients in t e rms  of applied loads 

(6) The complete solution is synthesized from the harmonic coefficients. 
The "elementary beam theory" part of the solution (n = 0, 1) is treated 
separately from the self-equilibrating part (n = 2, 3, 4. . . . . ). 

- 

Partial Differential Equations of the Shell 

Equations a r e  written with reference to the infinitesimal element of shell, shown 
in figure 4. 

Equations of Equilibrium 

&-1& = 0 
ax r a@ 

s r =  0 am 
8 4  
- _  

, 



Stress-Strain Relationshim 

1 au 
ax p = E t  - 

m r  
a 6  E i  

_ -  - ae - -  

Strain-Displacement Relationships 

- e r - v  aw 
a+ 
- -  

Derived Relationship Between Shear Flow and Tangential Displacement 
Combine equations (7), (8) and (9) :  

Ei 

Combine equations (2), (3) and (4): 

Combine equations (10) and (11): 

Equations (I), (5), (6), and (12) a r e  written in t e rms  of the variables p, q ,  u ,  and 
v ,  which are of primary importance in all  parts of the report .  

Introduction of Harmonic Coefficients 

v 
U 

The solution to  any problem concerned with the shell is periodic with period 2 A in 
the polar angle 4 , Hence, all unknown quantities may be expanded by Fourier series 
in 4 . 

It is convenient to consider the symmetry of the solutions with respect to  + = 0.  
Fo r  a unit radial load at + = 0 (see fig. I) solutions will be symmetrical with respect 
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2N 

0 

v 

i 
I4 

to C$ = 0, while for unit tangential o r  moment loads they will be antisymmetrical as - 
shown below: 

W W 

p =I pncosn+;  q =  1 qns inn+ 
n=o n= 1 

m 

u =Lo K~ cos n4  
cn 

v = x  v n s inn+ 
n= 1 

m 

P =  C F n s i n n + ;  q =  -f cn cos n+ 
11= 1 n=o 

00 W .=I n= 1 i insinn4;  v = -  

For  any particular value of n, the antisymmetric te rms  are symmetric with 
respect to a plane with polar angle 4 = n/2n , since if = 4' + ~ / 2 n  , then 

s in  (n+) = cos (n4')  

-COS (n+) = sin (n+') 

Hence, a homogeneous relationship (one not involving the loads directly) between 
antisymmetric harmonic coefficients with the same index, n ,  will have identical form 
with the corresponding relationship between symmetric harmonic coefficients. 

Substitute equation (13) into equations (12),  (I), (15) and ( 6 )  and obtain relation- 
ships between symmetric harmonic coefficients of a particular order .  Repeat, using 
equation (14) instead of (13),  to obtain the antisymmetric harmonic coefficients. 
doing, make use of the following identities : 

In so 

2 3 2 
s i n n +  = - (n  - n )  s in  n+ a3 (7 + 44 
2 

1 

. 



10 

The results a r e :  

I Ei 3 2 -  - -  - -a (n - n) vn & r  

- 1 f i n  
p, = E t  

- fin 
- p, = E t '  I 

a 

t: 
P 
0 
Iu a3 

(19) 

It is evident that it is sufficient to consider symmetrical coefficients alone, except 
for relationships involving applied loads ; the results will also apply for antisymmetrical 
coefficients. 
symmetrical one is indicated. It is now known that the equations for the antisymmetrical 
case have the identical form, but they are omitted for conciseness. 

In the work that follows, where both types of coefficients exist only the 

Formulation and Solution of the Characteristic Equation of the Shell 

Equations (16) through (19) a r e  f i rs t  combined to obtain a single equation. 

Differentiate equation (19) and substitute from equations (16) and (18) to yield 



Differentiate (20), substitute from equation (17), and rearrange to  give : 

3 2 d2ii, + .2(,3 - n)2 
qn = 0 

- -  d4'i, Ei(n - n) . - 
dx4 G t r  4 dx2 t' r 6  

The general solutions of this equation a r e  exponential functions of the roots of the 
characteristic equation which is : 

(22) 
4 2 P - e P  +A= 0 

where 3 2  Ei(n - n) 

Gt r4 
e =  

Equation (22) is a biquadratic equation, so  that there is no difficulty in obtaining 
the roots. 

Using identities 5 8 . 1  and 5 8 . 2  of reference 5 ,  we have: 

F o r A  > I 8/2)2 

P = - P 3 =  - a+ e/2 - j  K - e / 2  = - ( y - j p  (23) 
1 rK- 

For A ( 8/2)' 1 

p 1 =  - p  R = - 
L 
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For the particular problem at  hand in which the shell extends to  infinity, solutions 
corresponding to the roots with positive real  part  (P and P ) must be discarded fo r  
x z 0 andvice versa for  x < 0 . 3 4 

It is important to relate the roots obtained above to the physical properties of the 
shell in a manner that is both convenient for  computation and suggestive of important 
relationships. Define : The usefulness of the following definitions will be seen la ter .  

1 

(27) the characteristic length 
with rigid shear panels Lc - -4%- r [ +]Z - 

(28) 
the characteristic length - with rigid frames 

Evaluate cy and 0 from equations (23) and (24) in t e rms  of these coefficients. 
Since a and p depend on the harmonic index, n , a subscript n is added. 

1 1 1 - 
2 - 1 - 

cy = -  A4 [1+-+] 2 

n \ / 2  

now 

- n2 - 1 3 2  6 L: ~- Ei(n - n) . e 
2 K  2Gtr4 n2(n2 - 1) - 

- 
C 

3 

Hence 

1 n K / T  1 -  - (e) 
24-3  C 

8, =c' 
C 



In the case of real  roots: 

It can be shown by direct algebraic manipulation that: 

CY + C Y  = 2cY In 2n n 

This relationship will be useful later. 

The form of the solution for complex roots corresponding to x > 0 is: 

(33) 

(34) 
- -0 x a = Glne n cos(pnx + Ggn) 

The form of the solution for  real roots corresponding to x > 0 is: 

Justification of the term "characteristic length" is obtained from equation (34). 
If L 
Hen&, 
equilibrating stress system to decay to l/e of its value at x = 0 , provided Lr = 0 .  
F o r  transport  fuselage shells, 
be observed that, for  n = 2, an is very nearly equal to I/ IC . 

is set equal to  zero and n is chosen equal to  2, then an = 1/L from equation (29). 
Lc is the distance required for the exponential envelope of the yowest order  self- 

Lr/Lc is of the order  of 0.3.  For  such a value, i t  will 

The justification of the definition of Lr is obtained by allowing i to become 
infinite in equation (20). The roots of the characteristic equation then become 

Pr = * n /2Lr  (36) 
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The solution, valid for x > 0 and corresponding to these roots, is: 

- nx/2 1, qr = Grne 

Hence, Lr is the distance required for the envelope of the lowest-order, self- 
equilibrating s t r e s s  system to decay to l/e of i t s  value a t  x = 0 ,  provided that the 
frames are rigid. 

For Lr and Lc not equal to zero, the form of the solution will change from 
decaying sinusoid to  exponential type for n sufficiently large. The crit ical  value of 
harmonic index for which this transition occurs i s ,  from equation (30): 

Nc =/- 

(37) 

It will also be observed in equation (29) that for n = 0 and for n = 1 ,  (Y and 
This means that the corresponding t e rms  in the solution experie%ce no 

These t e rms  a r e ,  in fact, just those that would be predicted 
p 
dgcay for increasing x . 
by elementary beam theory. 

a r e  zero. 

Their effect will be added to the solution at the very end.  

Introduction of Boundary Conditions. The Relationship Between Tangential Shear Flow 
and Tangential Displacement Harmonic Coefficients a t  x = 0 

At x = 0 , axial displacement is planar due to the symmetry of the shell. Hence, - - -  
u = 0 for n > 2 .  
oPsolution given in equations (34) and (35) a r e  valid for a l l  quantities. 

pn, uns and Vn satisfy equation (21) as well as G, s o  that the forms 

Hence: 
- 
u = A e-ffnX sin pnx n < Nc (39a) n n 

- 
pn can be obtained using equation (18), and fin can then be obtained using equation (17): 

fin = Et' Ane-(Unx 1 - an  sin pnx + pn cos p n x J for  n < N~ 

fin = Et' An [ - cyln e-%?+ aZn e-@2nX ] for n > Nc ( 4 0 ~  
(continued) 
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Evaluate An in t e rms  of qn(o), the shear flow coefficient at x = 0:  

Substituting equations (42a) and (42b) into (41a) and (41b), respectively, gives 

for n <  Nc 1 sin p x 
n 2an 8, n (434  

Evaluate tn from equation (16):  

J 

for n < N  C (444 



1 6  

The relationship between V (0) and K(o) will be used in conjunction with a 
similar relationship for the loadea frame to solve the combined problem. 

L L  
4 3a!, - 0, 

for n < Nc y o )  r 
'n(O) Ei(n - n) 
- -  

2a!n 3 2  

- - for n > Nc 
4 r 

3 2  Ei(n - n) In 2n 

It can be shown that equations (45a) and (45b) are formally identical. Define: 

(454  

See glossary of symbols for definition of an . Also define: 

* 
Km = Lc a! + a !  

In  2n 

Using equation (33) in (47) and simplifying, 

1 +  2 a n  
K =  * n / 7 7  . = Kn 

2 6  
n 

The form of the relationship between tangential displacement and tangential shear 
flow, the input impedance, is,therefore, the same for all  n 5 2 , and is: 

Tn(0) r 4 Kn 

LC qn(O) Ei(n - n) 
. -  -- 

3 2  
- 

Note that Kn = 1 for n = 2 and Lr/Lc = 0 . 

(49) 

Since the form of the relationship between the symmetric and antisymmetric 
harmonic coefficients is identical, equation (49) is also valid for antisymmetric cases. 

. 
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Equations for the Loaded F rame  

The differential equations for  the loaded frame a r e  similar in form to the relevant 
equations for the shell. The net shear flow, 
on the frame. 

Aq , is equal to  q(o + )  - q(o-), and acts 

Equations of Equilibrium 

rl 
I 
GI 

Stress-Strain Relationship 

V 

A 

-- dM S r - m  = o 
db a 

M r  - -  de 
d@ EIO 

Strain-Displacement Relationships 

(53) 

(54) 

The above equations a r e  combined in order  to give the net shear  flow in t e rms  of 
tangential displacement and applied loads. 

Combine equations (53), (54) and (55) : 

Combine equations (50), (51) and (52): 
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Combine equations (56) and (57): 

Calculation of Shear Flow Harmonic Coefficients 

For the case of concentrated loads applied at  + = 0 (see fig. l ) ,  the distributed 
loads pa, ta , and ma can be represented by the following Fourier expansions in @ : 

S,ymmetric Case m = ta = 0 a 
m 

pa = 2' P~~ cos n + 
n= o 

P P *  - -2 + 21 c o s n 4  
2 A  A 

n= 1 

Antisymmetric Case pa = 0 

T 

= 2 ta 
cos n+ = 2n To + 2 71 2 cos n@ 

n= 1 n=o 

(59) 

The above Fourier expansions do not converge. However, results based on them 
do converge to the correct values. 

Introduce harmonic coefficients from equations (13) and (14) into equation (58) using 
equation (1 5). 

Symmetric Case 

T r 
0 
IU co 

(62) 
(continued) 
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Hence, n P  
v + -A. n Irr 

E1o 3 2 - - 
qn(o) = - - (n - n) 4 for  n >, 2 

2r 

Antisymmetric Case 

2 
(1 - n )Mo *O - -  0 3 2 =  

E1 

%(o) = - -4 (n - n) vn - 2 2 irr 2r  2 nr 

- - 
(63) 

Equations(62) and (63) can be combined with equation (49) to give the shear  flow 
coefficients in t e rms  of applied load: 

Symmetric Case 

n P  
(64) 

0 
K 

for n >/ 2 - EIO qn(o) = - - . - 2 E i  2 %(o)+ TZ 
C 

Define : 

0 
I 

y = q -  

y is a measure of the bending stiffness of the loaded frame relative to  the bending 
stiffness of the shell. 

Then 

Kn, which increases as n3 for large n , provides fairly rapid decrement of these 
expressions. 
for x > 0 . 

Equations (43a) and (43b) can be used to obtain the shear  flow coefficients 

Equations (66) and (67) a re  used to generate the entire solution to the problem. 

e 



Axial Load Harmonic Coefficients 

The harmonic coefficients for axial load wr inch can be obtained from q (0) n 
as follows, substituting equation (42) into equation (40) : 

The akove exm-essions are also valid for the antisymmetric case if g(o) is 
can be obtained by substituting equation (42) into 

replaced by cn(o? (refer to pages 8 and 9).  Values for Vn are given directly by 
equation (41),  whlle values for fi 
equation (39). n 

Internal Load Harmonic Coefficients 

Values of internal 1 oads in the loaded frame are separated into two par ts :  one 
part due to the applied concentrated loads plus the net shear  flow components for n = 0 
and n = 1; the other part due to the net shear  flow components for n >, 2 .  This 
separation is illustrated symbolically for the symmetric case below. 

m 

- Ag = - s i n @  irr -Aq = - C 2 q  (0) sin n@ n n= 2 

T 
t-J 
0 
Iu co 

The solution for the first set of loads will be referred t o  as the "elementary beam 
theory" part. This solution is well-known and is given on page 24.  
solution referred to as the self-equilibrating part  is that for which harmonic coefficients 
can be defined and evaluated simply. 

The part of the 
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The applied loads do not enter explicitly into the determination of the self- 
equilibrating part of internal f rame loads (only the shear  flow). Hence, for properly 
defined harmonic coefficients, expressions for symmetric and antisymmetric co- 
efficients have identical form. By analogy with the definitions of equations (13) and 
(14), define: 

Symmetric Case 

m 

F =I pn cos n4 
n= 2 

Antisymmetric Case 

s = -z s n c o s n 4  
n= 

M =  C G n s i n n 4  
n= 2 

s , F , M can be evaluated by substituting the expressions of equation (70) 
into equa%ons"(50f (51) and (52), with t , pa, and m 
including the antisymmetric case, a re :  

set  equal to zero. The results,  a a 

2r q"' sn =-- 
(I - n2) 

- 

It is noteworthy that the Fourierser ies  for  S, F ,  and M converge much more 
rapidly than the series for ?jn(o) and %(O) . 

V 
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Displacement Harmonic Coefficients 

The radial ,  tangential, and rotational displacements of the f rame are divided into 
“elementary beam theory” and “self-equilibrating’ parts in a slightly different way. 
those displacements are expanded in Fourier se r ies ,  the te rms  of order  n = 0 and 
n = I represent rigid rotation and translation of the frame. 
displacement depends, furthermore, on the manner in which loads are reacted and can 
be calculated i n  simple manner from “elementary beam theory. The te rms  of order 
n >/ 2 correspond to distortion of the frame. The tangential displacement harmonic 
coefficients a r e  expressed by equation (49), repeated below, in te rms  of the shear  flow 
harmonic coefficients. 

If 

The amount of such rigid 

The radial and rotational harmonic coefficients are defined as follows : 

(49) 

1 Symmetric Case I Antisymmetric Case I 

v = 2 
n- 2 

s in  n+ n 

Substitute equation (75) into equations (54) and (55) and solve for gn and Wn in te rms  
of v : n 

- w = n v  n n 

Substitute for Vn from equation (49) and repeat for the antisymmetric case: 
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"Elementary Beam Theory" Part of the Solution 

In this section, solutions are written down for  the internal loads in the loaded 
frame due to the external loads shown in figure below. 

below: 

SYMMETRIC CASE ANTISYMMETRIC CASE 

4 

Aq = - s in  + sr  

The complete solutions for internal loads a r e  given as reference 3 and reproduced 

- 
S I P I 
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Complete Final Solutions 

In this section, all the terms a r e  combined to form complete solutions ready for 
numerical calculation. In these solutions, the following are not included, a s  they depend 
on the location of the reacting loads : 

(1) The "elementary beam theory" part of the shear  flow which should be 
calculated from beam theory. 

(2)  The 'Ielementary beam theory" part of axial load intensity (p) which should 
be calculated from beam theory. 

The rigid translation and rotation of the loaded frame.  (3) 

Shear Flow Harmonic Coefficients 

Symmetric : 

r 0 
Antisymmetric: jn(o)  = - 

Shear Flow 

Axial Load in Effective Skin of Thickness t' 

. 
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Frame Bending Moment 

M = "elementary beam theory" part  given in table on page 23 

Frame Shear 

S = "elementary beam theory" part  given in table on page 23 

Frame Axial Load 

= "elementary beam theory" part  given in table on page 23 F 

Frame Tangential Displacement 

Frame Radial Displacement 

Frame Rotation 

Numerical Computations 

Equations (80) to (87) have been evaluated using an IBM 704 computer. Twenty terms 
of the Fourier series were used, and tables, giving the coefficients C defined below, ik 
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are included i n  reference 7 for L 1 L = 0.2 ,  0 .4 ,  and 1 . 0  . r c  

p = c  5 (+) + Cpt 2 (>)+ Cpm (2) + 
r PP 1‘ 

mt Tor + ‘rnm MO 
M = C P o r + C  

mp 

S = C  P o + C s t T o + C  - MO 

SP s m  r 

MO F = C  P + C  T + C  - fp o ft o fm r 

3 3 2 
.yr  

vp ’0 EIo + ‘vt T o z + C  EIo vm Mo E I ~  
yr v = c  

(91) 

(92) 

(93) 

(94) 

2 2 

+ Cgm Mo 
yr 

e = ‘Op P K  o EIo + ‘et To E I ~  (95) 

Illustration of the Effect of Frame Flexibility on Shell Loads 

To illustrate the application of the solutions to a practical problem, consider the 
s t r e s s  analysis of a transport airplane fuselage with the characteristics given below and 
subjected to an inward-acting radial load of 10,000 lbs at a frame whose moment of 
inertia is  2.  @ i n .  
different from those derived by the use of beam theory and they are not discussed here .  
They can be obtained from any of references 1, 4, o r  7. Instead, attention is focussed 
on the stresses in the shell. 

. It is well known that the s t resses  in the loaded frame are considerably 

Structural Characteristics 

lo = 15.0 in. Io = 2. 0 in. 

t = 0 .04  in. t’ = 0.20 in. r = 60.0  in. 
Po = 10 ,000  lbs 

4 I = 0 . 5  in. 4 

T ’  

. 
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Parameters required are calculated from the above. 

y = 0 . 1 0  Lc = 300 in. Lr = 115 in. Lr Lc = 0.385, 0.40 

Using these parameters in the tables of reference 7 and equations (88) and (89) 
provides the information necessary to  plot figures 5 and 6. 
s t resses)  and axial load intensities (and s t resses)  a r e  corrections to "elementary 
beam theory" only (see page 24). 

The plotted shear  flows (and 

In the s t r e s s  analysis of cylindrical shells supported by frames it is common practice 
to  account for a departure from "elementary beam theory" of the shear  s t r e s ses  in the 
immediate vicinity of the frame. Figure 5 shows that the perturbation in shear  flows 
propagates considerably farther in the axial direction than is normally allowed for in 
the design. At one value of @ , sixty inches away from the loaded frame,  the shear  
stress differs from that predicted by "elementary beam theory" by 1500 lbs/in2. 

The differences in the axial stresses predicted by "elementary beam theory" and 
the method of this report a r e  even more marked. The beam theory suggests zero axial 
stress in the shell at the station of the externally-loaded frame,  while this report gives 
3125 lbs/in2 (see figure 6). 

Lockheed Ai rc ra f t  Corporation, 
Ca l i fo rn ia  Division, 

Burbank, Calif., October 1959. 

c 



28 

APPENDIX A 

CORRECTION FOR FINITE FRAME SPACING 

In the main text, "A Reinforced Loaded F rame  in an Infinite, Uniform 
Shell, I t  solutions a r e  obtained for an idealized shell  whose unloaded frames a r e  
"smeared out1' in the axial direction to produce a uniform bending rigidity Ei per 
unit length. To account for the effects of finite f rame spacing there a r e  two alternatives. 
One is to write the equations for a finite length of shell in which i is put equal to the 
circumferential bending stiffness per  unit length of the skin-stringer combination, and 
use the exact methods indicated in reference 6 ;  however, such a solution would either 
have to be derived for each particular combination of shell and frame characterist ics 
or more parameters would have to be introduced and the number of tables of the type 
included in reference 7 would increase greatly. 
expedient; it is to consider a technique whereby a correction to the basic parameter y is 
computed. A s  a result, the f i rs t  section and the tables of reference 7 can be used. To 
accomplish this,  the problem of a "frameless" bay adjacent to the loaded frame in an 
infinite shell is solved exactly and used to derive approximate corrections to the solutions 
of the first section. A comparison is made with the solutions of reference 4 for a shell 
with equally spaced frames to check the validity of these approximate corrections. 

The second alternative is far more 

Distributing the frames in the axial direction, to give the shell a continuously 
distributed bending stiffness, has two main effects on the s t r e s s  distribution near the 
loaded frame. These are: 

(1) Since the loaded frame is not "smeared out!', bending stiffness 
of i j 0 / 2  is effectively added to the shell on either side of the loaded 
frame. 

(2) Since the cross  section undergoes more distortion near  the loaded 
frame than it does a t  a distance, the shell with "smeared-out" frames 
offers additional support over and above that included in (1). 

If the frame spacing is small ,  compared to the characteristic length, 
and if the loaded frame is heavily reinforced, the effect of finite frame 
spacing is small .  A criterion for estimating the importance of the effect 
is the following : 

For 

L 2  Io . Lc 

I jo  0 
- - = 2 y ( $ )  3 5 0  

7 
Y 

b ru 
03 

the effect of finite frame spacing on s t r e s ses  in the loaded frame is negligible. 

The "smearing out" of frames, other than ones immediately adjacent to  the 
loaded frame, has little effect on stresses in the loaded frame. 
the effect of neglecting finite frame spacing can be approximated by including 

Consequently, 
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a hay on either side of the loaded frame which has  no bending stiffness, 
as shown below. 

t - Q l - ~ - l  

~ A Y S  WITHOUT FRAMES\ 

The value of i selected for the above representation should be greater  
than L d 2  and less  than Lo . For i = .l 0/2,  the shell has correct  
total bending stiffness but the distance from the loaded frame to the 
f i rs t  supporting shell-bending element is smaller by a factor of 2 than 
in the actual structure.  For  1 = .Eo , this distance i s  correct ,  but 
the total bending stiffness of the shell is too small by an amount, iL,. 
In one example worked out later,  it is shown that L = 3 / 4 1 ,  gives 
good results.  

The effect of finite f rame spacing introduces an additional parameter ,  
jO/Lc, into the problem. 
of computations, since it increases the number of char ts  o r  tables 
that must be prepared. 
for finite frame spacing by modifying the "beef-up" parameter ,  y .  

The solutions given i n  reference 4 are correct  for a shell  with equally- 
cpaced concentrated frames that have equal bending stiffness (including 
the loaded frame). Hence, the approximations consiuei cC; iiei t: CIU C, 
evaluated by comparison of these results with the results given in 
reference 4. The assumption in reference 4 that the loaded frame has 
the same moment of inertia as unloaded frames gives very low values 
to the quantity on the left side of equation ( A - I ) ,  which quantity has been 
suggested as a criterion for the importance of finite f rame spacing. It 
is shown that reasonably good agreement is obtained between the results 
obtained by the approximations and the results given in reference 4 ,  so 
the approximations can be applied with confidence to other cases .  

This is undesirable from the point of view 

Consequently, an attempt is made to account 

29 

c 
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Characteristics of a Bay Without Frames 

The differential equations for  a shell without circumferential bending stiffness can 
be obtained from equations (16) to (19) of the f i rs t  section by setting i = 0 in equation (16). 
The results for symmetrical harmonic coefficients are: 

dKn - = o  
dx 

- dU, 
p, = Et '  

The general solution of these equations is : 

In the present example, U (0) = 0 ,  since distortions of the shell a r e  symmetrical 
with respect to the plane of the l8aded frame,  x = 0 . 
(A .  9) a t  x = l with ti (0) = 0 . Then eliminate pn(o), qn(o) by use of equations (A .  6) 
and (A.  7). This leads "to: 

Evaluate equations (A .  8) and 

(A .  10) 

(A. 11) 

4 



where 

where 
= [ & +  -+I 2 3  

3Et r Dl 1 

ni2 - a 
D22 - 3 - -  

D12 = D21 - 2Et'r 

General Solution for Shell with Frameless Bays Adjacent to the Loaded Frame 

Additional relationships between (9, 6 (l), ti (j) and V ( a )  are obtained 

These relationships are derived in Appendix B, and may be written: 
from the equations for the shell  with "s&eared-"out" f&mes exteading from x = .t to 
infinity. 

36 L3 
C 

2 2 2 2 ' 2 c r n L c  - E t ' r  n (n - 1) 

6 L," 

2 Z12 = - Zg1 = 
Et ' rn (n  - 1) 

(A. 12)  

(A. 13) 

2 2  z~~ = - 1 2  L~ an ~ t ' n  ( n  - 1) / 
Eliminate G,(j) and V,@) from equations (A. l o ) ,  (A. 11), (A. 12) and (A. 13). 

- vn(o) = (Zl l  + Dll)Gn(e) + (Z12 - D12) Pn(4 

= (z21 + D2J qp) + (z22 - D22) Pn(4 

(A. 14) 

(A. 15) 0 

Replace Sn(j) by qn(o) from equation (A. 6)and solve for  Tn(o) / Gn(o) : 
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This expression replaces equation (49) for the problem at  hand. 
from this point on is identical with the solution given in the main text. 
can be written as: 

The solution 
Equation (49) 

K 
so”lution for the present case be given by: 

is the only factor which enters the solution in the main text. Hence, let the 

V n ( 0 )  36 L: Kn(l) 
- -  - 

qn(0) n2(n2 - Et’ r2 

(A. 17)  

(A. 18) 

(A.  19) 

where 
(Z12 - D12)(Z21 + Dzl) 

(z22 - D22) 
(Zll + D1$ - 

n2(n2 - 1)2Et’r 
3 

36 Lc 
l7 (1) = n 

Further development of the solution can be confined to  the evaluation of En@). 
- 

For & =  0 ,  K n must be equal to Kn . For  & =  0 ,  DI1, D12, D21, and D22 vanish. 

Hence, 

n2(n2 - Et’r2 [ z l l  - E (0) = 
n 36 L: 

(A. 20) 

. 

This equality may be verified by direct substitution for Zll , Z12, , and Z22, and cornpared with the defining formula for Kn in equation’ (46) .  E q u a t i z 2 t  A.19)  may 
he rewritten as follows to incorporate the result of equation (A.  20).  

(A.  2J) 
(Z12 - D12)(Z21 + DZl) 

(z22 - D22) 
n3 - n)2 Et’r 

36 Lc E ( l ) = K  + I  n n 

Substitute explicit values for letter symbols and obtain after some algebraic 
manipulation and introduction of the parameters,  Lr and a n  , 

1 + 20!,&- m) 
(A. 22) 1 2 

2 

En@) = Kn + 

This expression can be used in place of K n in the results of the main text, in order to 
get an accurate solution of the substitute problem. 

- 1)(1 + a n  + “$1 

. 
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Approximate Corrections for  Finite Frame Spacing 

important, a reasonabl accu rhe  approximation to equation (A.  22) is obtained by 
omitting te rms  in .t2, 3, etc. This gives 

If it is  assumed that e/L is small and that terms for large value of n are un- 

which reduces to:  

L n l + a n  
e 0 2 r  E (0 = K + (K,) 4 a  + - 
C 

n n ( A .  24) 

where KO = nJn2  - and i s  the value of K for 0 . 
n 2 JiT n LC 

Since Kn enters into equations (66) and (67g 
it is useful to consider the in y . Let 

3 For  large value of n , yk,n increases as n2 for Lr/Lc = 0 , and as n for Lr/Lc > 0 .  

For  n = 2 and Lr/Lc = 0 

(A. 26) 

To t reat  the dependence of y on n correctly,  11- must be introduced into the 
solution as a separate parameter. 
placed by an approximate constant, y* , chosen to give a best fit to the family of values 
of yk ,  . 

(1) 

In order to avoid this 8ifficulty, yk,n may be re- 

Considerations pertinent to the choice of this constant a r e :  

For  large values of y (heavy reinforced frame) the te rm for n = 2 
dominates in the solution. 
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(2) The choice of 1 in equation ( A .  25) should not be less than 10/2 . 
(3) yl,n increases a s  n2 or  n . 3 

In view of these considerations, for large values of y let: 

For  smaller values of y K  , y* should be smaller  than indicated by equation (A. 27). 
An empirical rule that will be sh%wn to be satisfactory is: 

(A. 28) 

2 where the substitution a = (L /Lc) has been made. The following table shows the 
value of y for which va&es o f  y and y* a r e  equal, assuming 1 = i d 2  and L /I = 0.  4 n r c  

'j .345 
.144 
.082 

The rule given in equation (A. 28) makes it possible to introduce a correction for finite 
frame spacing by modifying the value of y . 

By using the concordance established between the parameters of this report and 
those of reference 4, it is possible to  compare the results of the two solutions. 
required relationships are developed in Appendix C .  
chosen to  represent the extreme ranges in airplane fuselage construction and a number 
of curves were plotted, using equation (A. 28) to  correct  the beef-up parameter for  the 
effects of finite f rame spacing. In all cases,  the value of the cri terion of equation (A. 1) 
was small  and hence, the correction to y was substantial. A typical example is shown 
in figure 
(A. 24) and (A.  28), respectively,] can be compared. 
spacing, suggested in equation (A. 28), is considered satisfactory. 

The 
Values of the parameters were 

7 in which the effects of the accurate and approximate corrections [equations 
The correction for finite f rame 



- Correction to the Example of "Illustration of the Effect of Frame Flexibility on 
Shell Loads" (page 26) 

Substituting the parameters of the example into equation (A. 28) gives a value 
Corrections of this  order of magnitude produce small  changes for y* of 0.13 . 

in the s t resses  computed, using y = 0 .10  . 

APPENDIX B 

REINFORCED LOADED FRAME AT FREE END 
OF A SEMI-INFINITE UNIFORM CYLINDRICAL SHELL 

Statement of the Problem 

It is convenient a t  this stage to consider the case of a loaded frame at  the free 
end of a semi-infinite shell. The solution to this problem is required when solving 
problems concerned with a shell that is non-uniform in the axial direction. * In 
particular, the Input Impedance is required. 

Solution 

The differences between the solution of this problem and that of the infinite 
shell a r e  due to the boundary conditions at  x = 0 .  For the semi-infinite shell there  
i s  zero direct s t r e s s  in the shell a t  x = 0,  while in the infinite shell, axial extension 
is prevented at  x = 0 ,  due to symmetry. 

It is shown in the main text that the Input Impedance to an infinite shell  
is the same  for n < Nc as it  is for n > Nc . Here the case of n < Nc is com- 
puted, corresponding to characteristic equation of the general solution having complex 
roots.  

The general solution for an applied radial load is : 

-CYnX = e  

E 

E 
Pn 

qn cos pnx 

The equations for applied antisymmetric loads take exactly the same form, and what 
follows applies to them also.  

* See reference 6 and the correction for finite f rame spacing in Appendix A.  

. 
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- - 

- - 

From equation (B. 1) we have 

4 4 

3 2  
2 cynr r 2 2  r 

+ pn+q 3 2 Ei(n -n)  Ei(n - n) 

20 n 1 n 
r 2 2  2 2  

Etl(cyn+.Pn) Et1(an + pn) 
- - .  

b 

dun dCn 
dx and similar expressions for dqn and dx’ dx 

The eight constants in equation (B. 1) can be evaluated by the use of equations (16) 
to (19), of which only three of the four equations (16), (17), (18), and (19) a r e  independent. 
Equations (16), (17) and (18) are used. 
and likewise the coefficients of the Cosine terms.  Substituting equation (B. 1) into 
equation (16), we have, equating first the coefficients of Sine terms and then Cosine 
terms.  

The coefficients of the Sine t e rms  must be equal 

Ei 3 2 

r 
cy E + P < ( 0 )  = 7 (n - n) E,, n q n  n n  

Substituting equation (B. 1) into equation (17) and equating coefficients leads to:  

Similarly, substituting equation (B. 1) into equation (18) gives 

1 - unEUn - Pn Un(0) = 7 E Et pn 

1 
Pn EUn - ii (0 )  = 3 Pn(0) n n  

Eliminating Epn, Eqn, E,,, and E,, from equations (B. 3), (B. 4) and (B. 5), 
the following two equations a r e  derived: 



Introducing the relationships for the characteristic lengths gives 

r 
- 61 ,  

EtTn2(n2-  1) 

1 -  

3 12 Lc cy 

r?n2 - 1) 

n L  

r 
C 

J 

Equations (B. 6) a r e  the stress-displacement relationships at the free end of a 
semi-infinite shell. It should be noted that equations (B. 6), derived for x = 0 ,  hold 
at  any point x ,  provided the shell i s  uniform between x and 00 . The equations for 
antisymmetric applied loadings a re  of the same form with % ( O ) ,  replacing %(o),etc. 
It can be shown that they are t rue for real roots of the characteristic equation. 
Equations (B. 6) a r e  used in reference 6 in the solution of a practical shell  problem. 

Input Impedance at a Free End 

The Input Impedance, Tn(o)/ q (0) = t (0 )  /f j  ( o ) ,  a t  a free end is found directly n n n 
from equations (B. 6) by setting 6 (0) = 0 . n 

Calculation of Harmonic Coefficients 

The method follows that method used in the main text.  
shear ilow ana cangarlLi& d;3pLcc~~-iv~C n ~ f f ! ~ ; n n + ~  in the she l l  at  x = 0 is found in 
equation (B. 7).  
harmonic coefficient a t  x = 0.  From this point a complete solution to the problem, 
analagous to that for the doubly infinite shell, can be developed by applying the boundary 
condition p (0) = 0 ,  instead of li (0 )  = 0 ,  fo r  the case of the doubly infinite shell, to  
equations (a) and (35). In what &llows only the symmetric loading case i s  discussed 
since the results hold for unsymmetric cases ,  except for expressions involving external 
loading. 

Equation (B. 7)  can be written, using the relationship Et’= 36 Ei L 4 6  /r , a s  

A relationship between 

This relationship is substituted in equation (62) to yield the shear  flow 

C 
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Substituting equation (B. 8) into equation (62) and noting that since the loaded 
f r ame  is supported by the shell on one side only, ACn = cn(o), 

nP  
ar 
0 - 

( 1  + 4Y Lc an) Gn(0) = 

The antisymmetric shear  flow coefficient at x = 0 is derived in the same 
manner as  the symmetric coefficient and is : 

n 

(B. 10) 

Comparison of equation (B. 9) with equation ( 6 6 ) ,  the equivalent equation for the 
infinite shell, shows they a r e  a r e  the same except that 4L,an replaces Kn. 

placement distributions for the semi-infinite shell, with loaded frame at free end, a s  
explained above. 

Now it is a simnle matter to derive a complete solution for the s t r e s s  and dis- 

APPENDIX C 

RELATIONSHIPS OF PARAMETERS OF THIS 
REPORT WITH THOSE OF REFERENCES 1 AND 4 

T u 
0 
Tu 
0 3  

It is important to be able to compare the results of this report with other solutions 
to the problem of a loaded frame in a circular,  cylindrical shell. References 1 and 4 
present two such solutions whose derivations are based on assumptions different from 
those of this report. It is of interest to  compare the parameters of the three methods 
and derive relationships between tl-e se parameters. 

Comparison of Parameters of This Report With Those of Reference 4 

In order to compare the results derived in the main text of this report and 
those of reference 4,  a concordance must be established between the parameters of 
this report and those of reference 4. 
shows the following relationships exist : 

A direct comparison of the parameters involved 
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I = ie due to the assumption of identical f rames throughout the shell ,  in reference 4. 
0 0' 

shells whose frames a r e  not uniformly spaced, by means of equations (C. 1). In so 
doing, the frame spacing, 1 o, given by equation (C. 1) should be checked with the 
actual value of f rame spacing. If the value in equation (C. 1) is much larger  than the 
actual value, the results given by the curves in reference 4 may be inaccurate. This 
application of reference 4 amounts to  relumping the frames so  that all  the idealized 
frames have stiffness equal to  the stiffness of the loaded frame. 

Comparison of Parameters of This Report With Those of Reference 1 

Infinitely Long Uniform Shell 

loaded frame is proportional to the local value of shear flow. The form of this 
relationship is : 

The curves of reference 4 can be used for the analysis of reinforced frames in 

In reference 1, the assumption is made that the tangential displacement of the 

where Gt is the shear  stiffness of the skin panel (assumed uniform) and L is an 
unspecified length, (except for the recommendation that it should never be made 
greater than the radius of the shell). In the terminology of this report ,  the above 
equation gives, 

L may be evaluated by comparing equations (A. 17) and (C. 3). 
is : 

One form of the result  

. A  Note that L is a function ot n . In ract, sor L / L  = u ,  L G ~ G L - ~ ~ S W  ab i ; 
Lr/Lc > 0 and n l a rge ,  L decreases a s  1 /n3.r 

with the present theory cannot be achieved. A device similar to that employed in the 
correction for  finite frame spacing is required. 

C 

Since a constant value of L has been assumed in reference 1, a direct comparison 

The curves presented in reference 1 a r e  drawn a s  a function of the parameter,  
d ,  defined below: 

r4Gt d =  -- 
Io LE 
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4 2 x 10 
m I 100 ______ 

. lo32 

0 1.46 

d d 
350 117 

2780 477 
7800 1200 

19700 2400 
41800 4190 
78000 6720 

2200 100 

If the value of L obtained in equation (C. 4) is substituted into this definition, 

6 2 x  10 
a0 I 1000 

.0326 

0 1.46 

d d 
1,110 37 2 
7,220 1,510 

24,600 3,800 
62,400 7,570 

132,000 132,000 
246,000 21,200 

25,000 1 , 0 0 0  

3 2  n - n )  

y Kn 
d =  ( 

Y 
Lr/Lc 

n 
2 
3 
4 
5 
6 
7 

Best Fit* 

Note that d is also a function of n. In fact, d increases as n4 for Lr/Lc = 0 ,  and 
as n3 for Lr/Lc > 0 and n large.  

For  large values of y the te rm for n = 2 dominates the solution. In this case 

3. 

0 

d 
110 
722 

2460 
6240 

13200 
24600 

100 

36 d = - .  
2 

1 + 2(Lr/Lc) 

This analytic expression for d may be used ,  in connection with the curves of 
reference 1,  for sufficiently large values of y . 

In order to  obtain the limits of applicability of equation (C. 7) and an  empirical 
relation between d and y for small y , the following table gives values of d calculated 
by equation (C. 6) and corresponding to  various values of the parameters in reference 4. 

TABLE C-1 

VALUES OF d CORRESPONDING TO VARIOUS 
VALUES OF PARAMETERS A AND A / B  IN REFERENCE 4 

I A  I 200 

6 

.84  

d 
60 

258 
660 

1260 
2300 

- 

---- 

40 

T 
P 
0 
r\) 
03 

* A s  determined by comparing curves for various d values with 
the curves from reference 4 corresponding to the values of A 
and A/B indicated at  the top of each column. 

c 
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ci 

The values of d labeled "Best Fit'' a r e  determined by taking the curves in 
reference 4 for bending moment due to  applied radial load Cmr, corresponding to the 
values of A and A / B  indicated, and plotting them on top of page of curves of Cmr in 
reference 1. 

The values of d indicated in Table C - 1  are plotted vs. n in figure 8. The "Best 
Fit" values of d on each curve are joined by a dashed line, which is the desired curve 
giving n as a function of d . Values of n less than 2 were not permitted on theo- 
retical grounds, and it was decided to keep n = 2 for d 6 110.  

The relationship between y and d is derived by substituting the relationship 
% is a known function of n = f(d) from figure 8 into equation (C. 6) .  

This enables curves of y vs. d for various values of Lr/Lc to be plotted in figure 9. 

Substantiation of this method of computing d was achieved by comparing a large 

Lr/Lc and n . 

number of curves in reference 4 withothers computed from reference 1 using figure 9 
and equation (C. 1) to compute d . A few typical examples are shown in the figures. 

The present method of computing d makes the curves in reference 1 practically 
identical to those in reference 4. 
heavily reinforced loaded frame supported by a shell with closely spaced frames ca r r i e s  
over to the use of reference 1 for the same purpose. 
of shell action embodied in equation (C. 2) ,  it may be wondered whether the method of 
reference 1 has any value. Consider the problem of analyzing a very complex frame 
with non-uniform bending stiffness, cross-braces, etc. The solution of this problem is 
made tractable if it can be assumed that the supporting shell  may be replaced by a set 
of simple springs whose stiffness is given by equation (C. 2). Such a procedure is 
presented in reference 9. It has been shown in this Appendix that this procedure is 
rational provided that L is computed from figure 9 and equation (C. 5). 

Thus, the objection to the use of reference 4 for a 

In view of the primitive idealization 

Semi-Infinite Shell 

From reference 1, but using the notation of this report ,  

Vn(O) tnw L 
- qn,!n! - 6 (o\ Gt -n 

Substituting equation (C. 8) into equation (C. 5), an expression is obtained for d : 

The Input Impedance at  the free end of a semi-infinite shell is given in equation 
(B.7 ), and on substituting it into equation (C. 9): 

(C.  10) 
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It has been shown that for the infinite shell 

Thus, for small  values of L,/Lc, d,  for the semi-infinite shell, is approximately 
1/4 that for the infinite shell, for that range in which n = 2 dominates the solution. Fo r  
values of d > 110 i t  becomes necessary to account for the higher order  stress systems, a s  
has been done previously in this appendix, before comparing d for  the infinite shell and 
semi-finite shell. 

APPENDIX D 

LOADS IN AN UNLOADED FRAME 

Using the equilibrium equations of the shell [equations (1) to  (4)], the frame bending 
moment per inch in the shell, m , and the other internal forces can be derived a s  functions 
of l /LC.  The bending moment a t  a f rame,  adjacent to a loaded frame, is obtained by 
multiplying m by Ie/i. 
utilizing the equations of equilibrium of the frame. 

The axial and shear forces in the frame can then be found by 

From equations (1) to (4), the equilibrium equations of the shel1,with "smeared 
out" frames, are: 

- s r  = 0 am - 

Taking the case of a radially applied load and introducing the harmonic coefficients 
from equations (13) into (D. I), the equations for  the harmonic coefficients are: 

- a% s 2 -  - n  s "+-+L! 
r ax r 

I - 
n l R + s r  = 0 n n  

- r 2  aqn 
2 ax f i = -  ~ 

n(n - 1 )  n 
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A similar expression can be developed for En , the analagous harmonic co- 
efficient for  the antisymmetric applied loading. 
taking into account the antisymmetric case as  w e l t  the bending moment per inch be- 

9 is found from equations (43), and 

The bending moment in an unloaded frame at L is given by 

The shear  and axial forces in the unloaded frame are found from the equations of 
equilibrium for a f rame,  equations (50) to  (52), with m = p = t = 0 . a a a  

Substituting equation (D. 4) into (D. 5), (D. 6) ,  and (D. 7) gives the bending moment, 
shear force and axial force in an unloaded frame, distance .i? from the loaded frame. 
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APPENDIX E 
EFFECT OF ECCENTRICITY OF LOADED FRAME 

Introduction 

The prc---!m of a loaded frame whose neutral axis does not coincide wil 1 e skin 
line in a doubly infinite shell is considered in two parts.  
theory" part is taken from reference 8 and modified slightly to agree with the sign 
conventions used in this report. Secondly, the solution for the "self-equilibrating" 
part  is given in a form similar to the main text 
This splitting up of the total solution is explained in the main text. 

F i r s t ,  the "elementary beam 

for the frame without eccentricity. 

Solution - "Elementarv Beam TheorvT1 Fart  

The table below is taken from reference 8. 

S 
I 
i M 

I +:s in+]  

I 

1 

1 - f s in  + 1 -- cos + - (1 -7)  I ;  

F 

2 c o s 4  c o s @  -[ 2ll (1-11) 2 

2sinQ 3 
( l - 7 ) ) - P n  + 

] I  - (r-9) cos + 
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General Solution - Self-Equilibrating Systems 

Loaded Frame in a Doubly Infinite Shell 

Assumptions. Except for there being an eccentricity g between the median 
plane of the skin and neutral axis of loaded frame, the assumptions are identical with 
those of the main text. 

The equations of equilibrium a r e  derived from figure 11. They a re :  

co cu 
0 
? 
ci 

Stress Strain Relations : 

% +  F + p a =  0 

2 dM S r - m  + r q A q = O  d T  - a 

_ _ -  de - -  M ( l  - q)r 
d+ E IO 

Strain Displacement Relations : 

Using the displacements v A , w and 0 a s  the displacements of the neutral axis, 
a s  in the main text, 
respectively, a r e  not affected by eccentricity. However, v , the tangential displacement 
a t  the skin line, is given by: 

we find th% ut and 8 ,  the radial and rotational deflections, 

v = v,, A + q r e  (E. 5) 
L . .  'I. 

Substituting this into the "inextensional" relations given a s  equations (54) and (55) , 
we have 

Combining these seven equations and introducing the harmonic coefficients, leads 
to a relationship between the tangential displacement and shear flow coefficients. 

a 

c 
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Firstly, eliminate w from equations (E. 6) and (E.  7) 

Using equations (E.  4) and (E.  8), we have 

Combining equation (E. 1) and (E. 2) 

n n 

(E. 10) 

From equation (E. 3) obtain expressions for d'%/d@L and S , which a r e  substituted 
into equation (E. 10) to give 

T 
P 
0 
Iu 
0 3  

(E. 11) 

At this juncture, consider the effects of symmetry and introduce the harmonic coefficients. 

Applied Radial Load 

Introducing the harmonic coefficients (see the main text) into equations (E. 9) 
and (E.  11) and noting that ma = ta = 0 leads to: 

(E. 12) 

and 
(E. 13) 

Substituting equation (E. 12)  into equation (E. 13) and noting that Tn(o) = Lqn/2 , 
in the case of a doubly infinite shell, we have 

n P  

2 2 r r  
0 

(n3 - n)'EIo Vn 
2 4  +- 

(E. 14) 
2(1 - 71) r (1 - w ) 

r 

e 



0 

a3 cu 
0 

c-7 
r;' 
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For  the shell, we have from equation (49), 

4 r K  

Combining equation (E. 15) and equation (E. 14) gives 

n P  
0 

Equation (E. 16) can be rewritten a s  

(E. 15) 

(E. 16) 

where 

Applied Moment and Tangential Load 

Taking due account of antisymmetry and carrying out similar operations a s  for the 
radial load 

By using these modified shear-flow harmonic coefficients in the manner given in the main 
t e x  t , the entire solution to the problem can be generated. 
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Figure 2. - Externally loaded frame. 

Figure 1. - Loads per inch and displacements in the 

I M o  \ 

she l l .  
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LOADED1 FRAME 

Figure 3. - An exploded view or lhe shell. 

P 
P 

Figure 4 .  - Loads per inch and displacements in the shell. 
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Figure 5 .  - An example to illustrate the ma  itude of shear flow and shear 
stress in a shell due to frame frxibility only. 
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Figure 6. - An example to illustrate the magnitude of axial load per inch and axial 
stress in a shell due to frame flexibility only. 
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Figure 7. - An example to illustrate magnitude of correction due to finite frame spacing. 
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Figure 9 .  - Chart for determining parameter "d" of reference 1. 
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Figure 10. - A typical comparison of references 4 and 1 using "d" 
derived by method of this report. 



3N 

57 

Figure 11. - Loads and displncements in  the f rame accounting tor ecceniriuiiy 
between sk in  : t i i d  f rame neutral axis. 
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